Regression trees are one of the oldest forms of AI models, and their predictions can be made without a calculator, which makes them broadly useful, particularly for high-stakes applications. Within the large literature on regression trees, there has been little effort towards full provable optimization, mainly due to the computational hardness of the problem. This work proposes a dynamic-programming-with-bounds approach to the construction of provably-optimal sparse regression trees. We leverage a novel lower bound based on an optimal solution to the k-Means clustering algorithm in 1-dimension over the set of labels. We are often able to find optimal sparse trees in seconds, even for challenging datasets that involve large numbers of samples and highly-correlated features.
translated by 谷歌翻译
IMPORTANCE: An interpretable machine learning model can provide faithful explanations of each prediction and yet maintain higher performance than its black box counterpart. OBJECTIVE: To design an interpretable machine learning model which accurately predicts EEG protopatterns while providing an explanation of its predictions with assistance of a specialized GUI. To map the cEEG latent features to a 2D space in order to visualize the ictal-interictal-injury continuum and gain insight into its high-dimensional structure. DESIGN, SETTING, AND PARTICIPANTS: 50,697 50-second cEEG samples from 2,711 ICU patients collected between July 2006 and March 2020 at Massachusetts General Hospital. Samples were labeled as one of 6 EEG activities by domain experts, with 124 different experts providing annotations. MAIN OUTCOMES AND MEASURES: Our neural network is interpretable because it uses case-based reasoning: it compares a new EEG reading to a set of learned prototypical EEG samples from the training dataset. Interpretability was measured with task-specific neighborhood agreement statistics. Discriminatory performance was evaluated with AUROC and AUPRC. RESULTS: The model achieves AUROCs of 0.87, 0.93, 0.96, 0.92, 0.93, 0.80 for classes Seizure, LPD, GPD, LRDA, GRDA, Other respectively. This performance is statistically significantly higher than that of the corresponding uninterpretable (black box) model with p<0.0001. Videos of the ictal-interictal-injury continuum are provided. CONCLUSION AND RELEVANCE: Our interpretable model and GUI can act as a reference for practitioners who work with cEEG patterns. We can now better understand the relationships between different types of cEEG patterns. In the future, this system may allow for targeted intervention and training in clinical settings. It could also be used for re-confirming or providing additional information for diagnostics.
translated by 谷歌翻译
给定数千种同样准确的机器学习(ML)模型,用户如何在其中选择?最近的ML技术使领域专家和数据科学家能够为稀疏决策树生成完整的Rashomon设置,这是一套几乎最理想的可解释的ML模型。为了帮助ML从业者识别具有此Rashomon集合中理想属性的模型,我们开发了Timbertrek,这是第一个交互式可视化系统,该系统总结了数千个稀疏决策树的规模。两种用法方案突出了Timbertrek如何使用户能够轻松探索,比较和策划与域知识和价值观保持一致的模型。我们的开源工具直接在用户的计算笔记本和Web浏览器中运行,从而降低了创建更负责任的ML模型的障碍。Timbertrek可在以下公共演示链接中获得:https://poloclub.github.io/timbertrek。
translated by 谷歌翻译
在任何给定的机器学习问题中,可能有许多模型可以很好地解释数据。但是,大多数学习算法仅返回这些模型中的一种,使从业者没有实用的方法来探索替代模型,这些模型可能具有超出损失函数中可以表达的内容的理想属性。 Rashomon集是所有这些几乎最佳模型的集合。 Rashomon集可能非常复杂,尤其是对于高度非线性功能类,允许复杂的交互项,例如决策树。我们提供了第一种完全列举稀疏决策树的Rashomon设置的技术;实际上,我们的工作提供了针对高度非线性离散功能类别的非平凡问题的所有Rashomon设置的首次列举。这使用户可以在所有近似同样好的模型中对模型选择的前所未有的控制水平。我们在专门的数据结构中表示Rashomon集,该数据结构支持有效的查询和采样。我们显示了Rashomon集的三个应用:1)它可用于研究一组几乎最佳树的重要性(与一棵树相对),2)Rashomon设置的精确度使Rashomon集可以枚举Rashomon集合。平衡的精度和F1得分,以及3)完整数据集的Rashomon集可以用于生产仅使用数据集的子集构建的Rashomon集。因此,我们能够检查新镜头问题的Rashomon集合,使用户能够选择模型,而不是受到仅产生单个模型的算法的摆布。
translated by 谷歌翻译
可解释性是强化学习系统可信度的重要组成部分。但是,可解释性可能以绩效恶化为代价,导致许多研究人员建立复杂的模型。我们的目标是分析可解释性的成本。我们表明,在某些情况下,人们可以在保持其最优性的同时实现政策可解释性。我们专注于从增强学习中的经典问题:$ \ mathbb {r}^d $中的$ k $障碍物的迷宫。我们证明了一个小型决策树的存在,在每个内部节点和深度$ o(\ log k + 2^d)$上具有线性函数,代表最佳策略。请注意,对于不断$ d $的有趣情况,我们有$ o(\ log k)$ depth。因此,在这种情况下,没有准确的截止性权衡。为了证明这一结果,我们使用了一种新的“压缩”技术,该技术可能在其他设置中很有用。
translated by 谷歌翻译
影响重症患者护理的许多基本问题会带来类似的分析挑战:医生无法轻易估计处于危险的医疗状况或治疗的影响,因为医疗状况和药物的因果影响是纠缠的。他们也无法轻易进行研究:没有足够的高质量数据来进行高维观察性因果推断,并且通常无法在道德上进行RCT。但是,机械知识可获得,包括如何吸收人体药物,并且这些知识与有限数据的结合可能就足够了 - 如果我们知道如何结合它们。在这项工作中,我们提出了一个框架,用于在这些复杂条件下对重症患者的因果影响估算:随着时间的流逝,药物与观察之间的相互作用,不大的患者数据集以及可以代替缺乏数据的机械知识。我们将此框架应用于影响重症患者的极其重要的问题,即癫痫发作和大脑中其他潜在有害的电气事件的影响(称为癫痫样活动 - EA)对结局。鉴于涉及的高赌注和数据中的高噪声,可解释性对于解决此类复杂问题的故障排除至关重要。我们匹配的小组的解释性使神经科医生可以执行图表审查,以验证我们的因果分析的质量。例如,我们的工作表明,患者经历了高水平的癫痫发作般的活动(75%的EA负担),并且未经治疗的六个小时的窗口未受治疗,平均而言,这种不良后果的机会增加了16.7%。作为严重的大脑损伤,终生残疾或死亡。我们发现患有轻度但长期EA的患者(平均EA负担> = 50%)患有不良结果的风险增加了11.2%。
translated by 谷歌翻译
稀疏决策树优化是AI自成立以来的最基本问题之一,并且是可解释机器学习核心的挑战。稀疏的决策树优化是计算地的艰难,尽管自1960年代以来稳定的努力,但在过去几年中才突破问题,主要是在找到最佳稀疏决策树的问题上。然而,目前最先进的算法通常需要不切实际的计算时间和内存,以找到一些真实世界数据集的最佳或近最优树,特别是那些具有多个连续值的那些。鉴于这些决策树优化问题的搜索空间是大规模的,我们可以实际上希望找到一个稀疏的决策树,用黑盒机学习模型的准确性竞争吗?我们通过智能猜测策略来解决这个问题,可以应用于基于任何最优分支和绑定的决策树算法。我们表明,通过使用这些猜测,我们可以通过多个数量级来减少运行时间,同时提供所得树木可以偏离黑匣子的准确性和表现力的界限。我们的方法可以猜测如何在最佳决策树错误的持续功能,树的大小和下限上进行换算。我们的实验表明,在许多情况下,我们可以迅速构建符合黑匣子型号精度的稀疏决策树。总结:当您在优化时遇到困难时,就猜测。
translated by 谷歌翻译
超材料是复合材料,具有工程化几何微观和中间结构,可以导致罕见的物理性质,如负泊松的比例或超低剪切电阻。周期性超材料由重复单元 - 细胞组成,并且这些单元电池内的几何图案影响弹性或声波和控制分散的传播。在这项工作中,我们开发了一种新的可解释,多分辨率的机器学习框架,用于在揭示其动态特性的材料的单元单元中查找模式。具体而言,我们提出了两个新的超材料的新可解释表示,称为形状频率特征和单元 - 单元格模板。使用这些要素类构建的机器学习模型可以准确地预测动态材料属性。这些特征表示(特别是单个单元格模板)具有有用的属性:它们可以在更高分辨率的设计上运行。通过学习可以通过形状频率特征或单元 - 单元模板可靠地传送到更精细的分辨率设计空间的关键粗略尺度模式,我们几乎可以自由地设计单元单元的精细分辨率特征而不改变粗略级别物理。通过这种多分辨率方法,我们能够设计具有目标频率范围的材料,其中允许或不允许波传播(频率带盖)。我们的方法产生了重大好处:(1)与材料科学的典型机器学习方法不同,我们的模型是可解释的,(2)我们的方法利用多分辨率属性,(3)我们的方法提供了设计灵活性。
translated by 谷歌翻译
目的:我们研究使用机器学习(ML)模型的可解释的累入预测,并在预测能力,稀疏性和公平性方面分析性能。与以前的作品不同,本研究列举了输出概率而不是二进制预测的可解释模型,并使用定量公平定义来评估模型。本研究还研究了模型是否可以横跨地理位置概括。方法:我们在佛罗里达州和肯塔基州的两个不同的刑事核查数据集上生成了黑盒和可解释的ML模型。我们将这些模型的预测性能和公平与目前用于司法系统中使用的两种方法进行了比较,以预测审前常规率:Arnold PSA和Compas。我们评估了所有模型的预测性能,可以在两次跨越两次预测六种不同类型犯罪的模型。结果:几种可解释的ML模型可以预测常规和黑盒ML模型,比Compas或Arnold PSA更准确。这些模型在实践中可能有用。类似于Arnold PSA,这些可解释模型中的一些可以作为一个简单的表格写入。其他可以使用一组可视化显示。我们的地理分析表明ML模型应分开培训,以便单独的位置并随时间更新。我们还为可​​解释模型提供了公平分析。结论:可解释的机器学习模型可以在预测准确性和公平性方面表现,也可以表现,也可以表现,也可以执行不可解释的方法和目前使用的风险评估尺度。机器学习模型对于单独培训,可以更准确地进行不同的位置,并保持最新。
translated by 谷歌翻译
The primary aim of single-image super-resolution is to construct a high-resolution (HR) image from a corresponding low-resolution (LR) input. In previous approaches, which have generally been supervised, the training objective typically measures a pixel-wise average distance between the super-resolved (SR) and HR images. Optimizing such metrics often leads to blurring, especially in high variance (detailed) regions. We propose an alternative formulation of the super-resolution problem based on creating realistic SR images that downscale correctly. We present a novel super-resolution algorithm addressing this problem, PULSE (Photo Upsampling via Latent Space Exploration), which generates high-resolution, realistic images at resolutions previously unseen in the literature. It accomplishes this in an entirely self-supervised fashion and is not confined to a specific degradation operator used during training, unlike previous methods (which require training on databases of LR-HR image pairs for supervised learning). Instead of starting with the LR image and slowly adding detail, PULSE traverses the high-resolution natural image manifold, searching for images that downscale to the original LR image. This is formalized through the "downscaling loss," which guides exploration through the latent space of a generative model. By leveraging properties of high-dimensional Gaussians, we restrict the search space to guarantee that our outputs are realistic. PULSE thereby generates super-resolved images that both are realistic and downscale correctly. We show extensive experimental results demonstrating the efficacy of our approach in the domain of face super-resolution (also known as face hallucination). We also present a discussion of the limitations and biases of the method as currently implemented with an accompanying model card with relevant metrics. Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously pos-sible.
translated by 谷歌翻译